A project of Volunteers in Asia

Workshop Exercises Metal, Fundamental Skills, Part A
edited by H.N.C. Stam

Published by:
    INTEMS b.v.

Available from:
    TOOL
    Entrepotdok 68a/69a
    1018 AD Amsterdam
    THE NETHERLANDS

Reproduced by permission.

Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original document.
FUNDAMENTAL SKILLS

WORKSHOP EXERCISES METAL

PART A

INTEMS bv
Inter-continental Technical Education, Materials & Services
The Netherlands
WORKSHOP EXERCISES METAL

PART A

FUNDAMENTAL SKILLS

2nd edition

EDITOR-IN-CHIEF
ING. H.N.C. STAM

INTEMS bv
Inter-continental Technical Education, Materials & Services
The Netherlands
INTRODUCTION

Intercontinental Educational Media B.V. was established in 1967 to meet the constantly growing demand for educational media suitable for use all over the world. The explosive development of technical education and modern teaching methods throughout the world has led to a rapid increase in the international exchange of learning approaches and educational media, especially books and other kinds of printed materials.

Technical and vocational education, in all its forms, will be progressively more important for balanced economic growth in all parts of the world. For many countries, industrialization is essential for a proper development of their manpower and natural resources.

Technical and vocational education is also an aspect of education that lends itself most readily to worldwide standardization. In general, tools and working methods are largely identical, despite the existence of special tools and techniques that may be peculiar to certain countries. Experience in those industrially developing countries showing an increasing interest in technical education, and with a growing number of students, has made it clear that suitable learning aids, and in particular textbooks, are by no means easy to obtain.

Existing textbooks compiled for students in highly industrialized countries, are difficult to adapt to local circumstances and can seldom be fitted in with the programmes and curricula of other countries.

Collaboration in the field of international educational media was established with 'International Technical Education Media Services' (INTEMS), in order to develop adequate learning and teaching material for situations that differ in many respects from those in the industrialized world.

The Directorate of International Technical Assistance of the Netherlands Ministry of Foreign Affairs took a positive interest in this development and provided considerable financial support to the work.

The Technical Education Inspectorate of the Netherlands Ministry of Education and Science, in charge of technical assistance, especially in the field of technical education institutes collaborated closely on the editorial side of the material.

It is hoped that this new approach to teaching in Technical and Vocational Education will contribute to the expansion of this important aspect of economic and social development in many countries.

May 1975/ October 1982

The editor-in-chief

H.N.C. Stam
SERIES TECHNOLOGY METAL

TECHNOLOGY METAL I

Part A: Fundamental skills
Part B: Workshop processes
Part C: Mechanisms, transmissions and fittings
Part D: Introduction to machine-tools
Part E: The workshop, organisation and maintenance

TECHNOLOGY METAL II

Part A: Hand and power tools for fitting
Part B: Limits and tolerances
Part C: Sheet-metal work
Part D: Machine tools
Part E: Soldering and welding
Part F: Forging
Part G: Pipe fitting and installation
Part H: Ferro materials

TECHNOLOGY METAL III

Part A: Turning
Part B: Milling
Part C: Shaping
Part D: Non-ferro materials

WORKSHOP EXERCISES METAL

Part A: Fundamental skills
Part B: Fitting
Part C: Sheet-metal work
Part D: Machining
Part E: Soldering and welding
Part F: Forging

OPERATION SHEETS METAL

OTHER VOLUMES OF ITEMS PICTORIAL SYSTEM

Automobile mechanics
Electricity
Technology wood
Workshop exercises wood
Safety
Technical drawing, blue-print reading and free-hand sketching
Workshop mathematics
Applied science and mathematics
Teaching outlines
### PART A: FUNDAMENTAL SKILLS

#### Contents

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Clamp</td>
<td>7</td>
</tr>
<tr>
<td>1002</td>
<td>Blind flange</td>
<td>19</td>
</tr>
<tr>
<td>1005</td>
<td>Soldering iron with stand</td>
<td>27</td>
</tr>
<tr>
<td>1006</td>
<td>Tool-box</td>
<td>43</td>
</tr>
<tr>
<td>1007</td>
<td>Eye-shield</td>
<td>53</td>
</tr>
<tr>
<td>1008</td>
<td>Staff holder</td>
<td>73</td>
</tr>
<tr>
<td>1009</td>
<td>Saw-frame</td>
<td>85</td>
</tr>
</tbody>
</table>
CLAMP

PICTOSTEPS
WORKSHOP INSTRUCTION METAL
USE
The clamp is used for holding the work on the table of a drilling or milling machine.

MATERIAL      DIMENSIONS
Mild steel     100 x 50 x 12.7 mm
               (4 x 2 x $ in)

TOOLS
Blunt bastard file
Try square
Outside callipers
Vernier callipers
Steel straight edge
Dividers
Centre punch
Engineers’ hammer
Drilling machine
Threading tap
Tap wrench

MATERIAL      DIMENSIONS
Blunt bastard file
Scriber
Rule
Vice
Vice clamps
Chalk or varnish
Stop block
Bevel
Round file
Saw frame
Saw blade
Twist drill (8.5 mm)
Twist drill (11 mm)

OPERATION
Holding.

Operation
File flat and crosswise, i.e. after a few strokes in one direction reverse the action by filing in the other direction.
Change directions regularly.

Test for flatness in every direction.

TOOLS
Vice
Vice clamps
Blunt bastard file

Try square
Direction of testing.
Turn work. File flat to 12 mm thickness. File crosswise. Change direction regularly.

Test on even thickness all over surface.

Test on correct thickness: 12 mm. Reading:

Outside calipers.

File one long end flat, straight and square.

Test flatness of this side.

Vernier calipers.

Blunt bastard file.

Try square.
Test this side on squareness. Keep try square at right angles to side.

Apply chalk or varnish. Draw line at right angles to finished side nearest to edge.

Mark a distance of 96 mm from scribed line. Place V-mark with point exactly at 96.

Square line across at distance marked. Draw line exactly through point of V-mark.

Mark distance of 48 mm on both lines. Place V-mark with point exactly at 48.
<table>
<thead>
<tr>
<th>Steel straight edge.</th>
<th>Scribe line through both V marks.</th>
<th>Steel straight edge. Scriber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3cri ber.</td>
<td>Draw line exactly through points of V-mark.</td>
<td></td>
</tr>
<tr>
<td>By 2 try square.</td>
<td>Marked out result.</td>
<td></td>
</tr>
<tr>
<td>Scribe line through both V marks.</td>
<td>File long side to line.</td>
<td></td>
</tr>
<tr>
<td>Draw line exactly through points of V-mark.</td>
<td>Remove any filings.</td>
<td>Blunt bastard file</td>
</tr>
<tr>
<td>File long side to line. Remove any filings.</td>
<td>Test on squareness (x) and on flatness and straightness (xx).</td>
<td>Try square.</td>
</tr>
<tr>
<td>Test on squareness (x) and on flatness and straightness (xx).</td>
<td>Test width: 48</td>
<td>Vernier calipers.</td>
</tr>
<tr>
<td>Test width: 48</td>
<td>Reading.</td>
<td></td>
</tr>
<tr>
<td>Reading.</td>
<td>Vernier calipers.</td>
<td></td>
</tr>
</tbody>
</table>
File the two short sides until they are truly flat, straight and parallel.

Test on squareness to other sides.

Result: total length = 96 mm

Reading:

Mark 24 mm from edge at two places. Do not forget to chalk or varnish. Put V-mark with point exactly at 24.

Draw line exactly through V-marks. This is the centre line. A centre line is sometimes also called: datum line.

Blunt bastard file.

Try square.

Vernier calipers.

Stop block.

Rule.

Scriber.

Steel straight edge.
Mark 4 V-marks on this line at distances of 24 mm, 50 mm, 62.5 mm and 75 mm from one short edge.

Scribe short lines through these four points.

Centre punch at intersections. Put centre punch at angle for finding exact positions. Keep upright when hitting.

Mark out half circle tangent to three edges. Take 24 mm point for centre.

Dot-punch to make circle permanent. Punched dots should be very light.


Try square. Scribe.

Centre punch. Hammer.

Dividers.
Mark distance of 10 mm from opposite edge. 

Marking:

Stop block. 
Rule. 
Scriber.

Square line across at this distance. 

Try square. 
Scriber.

Mark angle line on long sides using a 45 deg. bevel. 
Do this on both sides. 

Bevel. 
Scriber.

On short side scribe line connecting intersections of angle lines with edges. 

Try square. 
Scriber.

File to scribed line. 
(Work in vice held at angle). 

Vice. 
Blunt bastard file.
| Test angle.  
Angle 135°. | Bevel. |
|--------------------------------------------------|-------|
| ![Drill 8.5 mm hole in centre of scribed line.  
Use cutting lubricant.](image) | Drilling machine.  
8.5 mm Twist drill.  
Vice clamp (machine vice). |
| Drill three 11 mm holes in remaining drill centres. | Drilling machine.  
11 mm Twist drill.  
Vice clamp (machine vice). |
| Scribe two lines tangent to drilled holes. | Steel straight edge scriber. |
| File slot. | Round file. |
Finish slot.

Edges and arcs should connect accurately.

Blunt bastard file.

File to shape, rough shape first.

Blunt bastard file.

File flats in different directions.

Mark out angled edges.

35 mm on long edges, 9 mm on short edges.

Rule. Scribe. Steel straight edge.

Saw off corners.
Saw on outside line, leaving the latter on the work.

Saw frame. Saw blade.

File to line.

Blunt bastard file.
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Put Nr. 1 tap in wrench. Tighten securely.</td>
</tr>
<tr>
<td></td>
<td>Nr. 1 Tap (5/8” UNF), Wrench.</td>
</tr>
<tr>
<td>2</td>
<td>Start with a few turns in the hole. Turn clockwise, applying slight pressure.</td>
</tr>
<tr>
<td></td>
<td>Nr. 1 Tap, Wrench.</td>
</tr>
<tr>
<td>3</td>
<td>Test tap on being accurately at right angles to work.</td>
</tr>
<tr>
<td></td>
<td>Nr. 1 Tap, Wrench. Try square.</td>
</tr>
<tr>
<td>4</td>
<td>Tap through work. Apply the right cutting lubricant. If tap sticks turn slightly backward. Release pressure.</td>
</tr>
<tr>
<td></td>
<td>Nr. 1 Tap, Wrench. Brush.</td>
</tr>
<tr>
<td></td>
<td>WORK IS FINISHED</td>
</tr>
</tbody>
</table>

WORK IS FINISHED
BLIND FLANGE

PICTOSTEPS
WORKSHOP INSTRUCTION METAL
NOTE:_tolerance on all dimensions $\frac{1}{2}''$. 

[Diagram with dimensions labeled]
USE
The blind flange may be used for sealing an opening normally provided with a flange of identical shape and size.

MATERIAL DIMENSIONS
Mild steel, packing
Length : X 3½ in (89 mm)
Width : XX 2 in (51 mm)
Thickness: XXX 2½ in (63.5 mm)

TOOLS
Blunt bastard file
Try square
Outside callipers
Vernier callipers
Scriber
Rule (inches)
Spring compasses
Steel straight edge
Centre punch
Engineers' hammer
Hack saw
Stop block
Blunt smooth file
Packing shears
Hollow punch (½ in)
Pencil
Vice
Vice caps
Chalk
Varnish
Twist drill (½ in)
Twist drill (½ in)

OPERATION
File flat and crosswise.
Change direction of filing regularly.
Use clean vice caps.

Check flatness in all directions.
Check lines.

Turn work upside down, file flat to ½ in thickness.

File crosswise.
Change direction of filing regularly.

TOOLS
Vice
Vice caps
Blunt bastard file
Check flatness in all directions.

- Check lines

Regularly check work on equal thickness.
Check all over surface.

Try square.

Outside calipers.

Test on correct thickness.

Reading:

File one side flat and square.

- □ = 15 deg.

Check on flatness X and squareness XX.

Vernier calipers.

Vice.
Vice caps.
Blunt bastard file.

Apply chalk or varnish for marking out.
Put V-marks at two places 15/16" from finished side

Rule.
Scriber.
Stop block.
Chalk or varnish

Use stop block.
Points of V-marks accurately at 15/16".
Scribe line exactly through points of V-marks.

Accurately in middle of line put V-mark.

Middle of work is at 1 3/4" from side.

Mark 1 3/16" on either side of middle.

Put rule with 1 3/16" at midpoint. Scribe V-marks at 0 and 2 3/8".

Scribe short crosslines through these three points.

Centre punch intersections. Find exact point by tilting the punch. Hold punch upright when striking it.

Middle centre shallow, outer centres deep.
From midpoint of line scribe circle tangent to finished side. Check circle on correct radius: diameter should be 1 7/8".

From either outer centre scribe circle with radius 1/2".

Set 1/2" from rule.

Scribe 4 lines tangent to circles as shown:

Drill two holes 1/4" dia. Use cutting lubricant.


Enlarge holes to 1/2" dia. Use cutting lubricant.

Saw off four corners.

Stay outside lines.

File flat and square to lines.

File round. First rough shape, file faces in various directions, then finish off.

Round corners. First shape roughly by filing faces in various directions. Then finish off.

For the finishing touch use smooth file. A real polished sheen is obtained if the file is first just rubbed along a piece of chalk.

Saw frame.
Saw blade.
Vice.
Vice caps.

Blunt bastard file.
Vice.
Vice caps.

Vice.
Vice caps.
Blunt bastard file.

Vice.
Vice caps.
Blunt bastard file.

Vice.
Vice caps.
Blunt smooth file.
Piece of chalk.
Now the gasket will be made. Fetch a piece of packing material about the size of the flange and about 1/16" thick.

Mark out gasket by tracing along flange. Do not forget the holes!

Cut out gasket along lines. Packing shears.

Punch the holes. Hollow punch. Hammer.

Gasket is ready.

Code 1002 - INTEMS B.V. - P.O.Box 262
4100 AG Culemborg - The Netherlands
SOLDERING IRON WITH STAND

PICTOSTEPS
WORKSHOP INSTRUCTION METAL
SOLDERING IRON AND STAND

USE: The soldering iron is a tool used for soldering, that is joining metallic edges or surfaces by means of molten metal or alloy (solder). The hot soldering iron is rested on the stand.

TOOLS: Smith's fire. Rubber mallet.
Smith's tongs. Pair of pliers.
Anvil. Soldering iron.
Smith's hammer. Brush.
Scriber. Flux.
Rule. Solder.
Try square. Bevel protractor.
Centre punch. Piece of wood (at least 10 x 21 cm).
Hammer. Panel pins.
Drilling machine. Vice clamps.
Vice. Metal strip 16 x 3 mm.
Bastard hand file. Short length of 10 mm dia. bar. (150 mm).
Smooth file. Short length of 6 mm dia. bar. (150 mm).
Wooden packing. Emery paper.
Small square file. Short length of 6 mm length.
Ledge (50 cm length). Steel straight edge.
Lever shears. Lever shears.
Twist drill (3 mm). Twist drill (3 mm).
Boring tool. Boring tool.

MATERIAL:

<table>
<thead>
<tr>
<th>MATERIAL:</th>
<th>DIMENSIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mild steel.</td>
<td>Length 175 mm, dia. 5 mm.</td>
</tr>
<tr>
<td>2. Copper.</td>
<td>10 x 10 x 40 mm.</td>
</tr>
<tr>
<td>3. Wooden handle</td>
<td>200 x 75 x 0.5 mm.</td>
</tr>
<tr>
<td>(from stock).</td>
<td></td>
</tr>
<tr>
<td>4. Tinned steel sheet.</td>
<td>Length 450 mm, dia. 2 mm.</td>
</tr>
<tr>
<td>5. Copper-plated welding wire.</td>
<td></td>
</tr>
<tr>
<td>OPERATION</td>
<td>TOOLS</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Forging</td>
<td>Smith’s fire, Smith’s tongs.</td>
</tr>
<tr>
<td>We start by forging the shank.</td>
<td></td>
</tr>
<tr>
<td>The drawing is on page 16.</td>
<td></td>
</tr>
<tr>
<td>Heat bar over about 2 cm until</td>
<td></td>
</tr>
<tr>
<td>white hot.</td>
<td></td>
</tr>
<tr>
<td>Take bar from fire.</td>
<td>Smith’s tongs.</td>
</tr>
<tr>
<td>Rest bar on anvil at small angle.</td>
<td>Smith’s tongs, Anvil.</td>
</tr>
<tr>
<td>Hammer point 40 mm in length.</td>
<td>Smith’s tongs, Anvil, Smith’s</td>
</tr>
<tr>
<td>Turn bar through 90° after each</td>
<td>hammer.</td>
</tr>
<tr>
<td>blow.</td>
<td></td>
</tr>
<tr>
<td>Heat other end of bar over about</td>
<td>Smith’s fire, Smith’s tongs.</td>
</tr>
<tr>
<td>2 cm until white hot.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Take bar from fire and rest it on anvil at small angle.</td>
</tr>
<tr>
<td>2</td>
<td>Hammer tip to a point 15 mm in length and square over 3 mm.</td>
</tr>
<tr>
<td>3</td>
<td>Now we start making the head or &quot;bit&quot; of the soldering iron. It is made from the piece of copper. The working drawing is on page 16.</td>
</tr>
<tr>
<td>4</td>
<td>Scribe V-mark 5 mm from end.</td>
</tr>
<tr>
<td>5</td>
<td>Scribe line through point of V-mark.</td>
</tr>
</tbody>
</table>

- Smith's tongs.
- Anvil.
- Smith's hammer.
- Scribe.
- Rule.
- Scribe.
- Square.
Find midpoint of this line (5 mm from edge).

Centre punch at this point.

Drill hole 3 mm dia. Use wooden packing in vice.

10 mm from other end scribe line square to side.

Scribe same distance on all surfaces around piece of metal.

Scriber.
Rule.

Centre punch.
Hammer.

Drilling machine.
Twist drill 3 mm dia. Wooden packing.

Scriber.
Rule.
Square.

Scriber.
Square.
Scribe V-mark at centre of front face (5 mm from edge).

Scribe line through point of V-mark parallel to drilled hole.

Scribe four oblique lines as shown.

File off to oblique lines. Finish with smooth file.

At this stage the "bit" looks like this.
File square-section tapering hole to fit the end of the shank. Point of shank should extend about 3 mm through bit.

Clamp shank in vice, and place bit on it.

Hammer round head on shank.

Fit handle to other end of shank. The soldering iron is now ready.

Now we are going to make the stand. First the base. We start from one edge which is cut accurately straight. We will call this the bottom edge. Scribe a line at right angles to this edge, as near the edge as possible.
Scribe V-marks at distances of 20, 31, 47, 52.5, 147.5, 153, 189, 180 and 200 mm from this line.

Scribe lines through these V-marks square to the bottom edge. These are the bending lines.

Mark off distances of 75 mm on the outermost lines.

Scribe lines through these V-marks.

Cut off on outermost lines.

Scriber. Rule.

Scriber. Square. Ledge.

Scriber. Steel straight edge.

Lever shears, or hand shears.
At 100 mm from short edge
scribe line.

Put V-mark at midpoint of this
line (37.5 mm from edge).
Centre punch at this point.

Fasten plate to piece of wood
with panel pins.
Drill hole 3 mm dia.

Set boring tool to 40 mm dia.
Bore hole.

Clamp plate together with 10 mm
dia. bar in vice. The bending line
second to last should be at same
height as the centre line of bar.
Bend to right angles.
Continue bending as shown.

Check that angle is 60°. The three previous operations should be repeated on the other side of the base. (Bend to same direction)

Clamp base together with 10 mm dia. bar in vice. The innermost bending line should be at same height as centre line of bar. Bend.

Continue bending until upper and lower surfaces are parallel. Repeat the two previous operations on the other side of the base. The base is now finished.

Now we are going to make the wire rest. This is easily bent by hand from welding wire. Clamp wire with 10 mm dia. bar in vice. Wire extends 186 mm above centre line of bar. Bend to right angle. Repeat on other end of wire.
Wire is clamped as shown. Both legs extend 125 mm above centre line of bar.

Both legs are bent to angles of 75°.

One end of wire is clamped as shown in figure. Wire extends 57 mm above centre line of bar.

The wire is bent to right angles.

This same end is clamped in the vice as shown here. The wire should be clamped by the strip. Bend until the end is at right angles to bottom line. See next page.
Check that end of wire is at right angles to base.

Clamp wire in vice as shown here. The wire should be firmly clamped by the strip. End of wire should extend 13 mm above centre bar.

End of wire is bent round bar as shown here.

Bend tip about 5 mm outward.

Repeat the previous seven operations on other end of wire. The wire has now been bent to a rest shaped as shown here.
Now the wire rest has to be soldered to the base.

Heat copper of soldering iron until flame is bright green. Keep point of copper bit upward.

Dip point of bit in flux (soldering acid).

The tip is tinned by rubbing it along the solder.

Clean the wire with emery paper and place the rest on the base in the position shown in the working drawing on page 15. Put flux at the places where the wire rest touches the base.

Heat soldering iron until flame is green. Keep tip of copper bit upwards.
Dip point into flux.

Apply solder to point.

Solder rest to base along the whole length in contact with it. Press wire down and take care that it does not move. When iron gets too cold, reheat.

When soldering is completed any flux left is thoroughly rinsed away with water. Dry with cloth.

Now the whole stand is complete.
Tolerance on all dimensions 1 mm

- X = detail
- XX = development of base
- XXX = solder
SOLDERING IRON

Tolerance on all dimensions 0.5 mm
unless otherwise stated

X = hammer
XX = fit to (2)
TOOL-BOX

PICTOSTEPS
WORKSHOP INSTRUCTION METAL
PICTOSTEPS
WORKSHOP INSTRUCTION METAL

TOOL-BOX

USE: A tool-box is a box used for keeping and transporting different tools.

TOOLS: Ledge Plate shears
Try square Hand drill
Scriber Twist drills
Rule 2.2 and 5.5 mm
Steel straight edge Vice
Lever-operated Folding bars
sheer G-cramp
Protractor Wooden or plastic
Centre punch mallet
Swage block 2 Stakes
Bar 30 mm dia. Rivet set
Smith's hammer Snap
Smith's fire 12 Aluminium rivets
Hammer 2 mm Ø—5 mm long

MATERIAL: Black sheet steel 0.5 mm thick
DIMENSIONS: 200 x 300 mm (x)
123 x 45 mm (xx)

MATERIAL: Bar steel
DIMENSIONS: Diameter 5 mm
Length 243 mm (xxx)

OPERATION | TOOLS
---|---
Put ledge along one side which has been cut quite straight. Then scribe perpendicular to ledge. Scribed line as near edge as possible. Use soft scriber (brass). | Ledge. Try square. Scriber.

Keep ledge in place. Scribe perpendicular to it at 300 mm from first scribed line. | Ledge. Try square. Scriber. Rule.
Set off distances of 200 mm on both lines.

Draw line exactly through the points of the two V-marks marked off.

Cut out piece marked out. Do this exactly on the lines.

Mark off two V-marks at 50 mm from each long side.

Scribe two lines through V-marks.

Rule.

Enlarged detail

Scriber.

Steel straight edge.

Scriber.

Lever-operated shear.

Rule.

Scriber.

Steel straight edge.

Scriber.
Scribe two lines at 50 mm from short sides.

Scribe four lines at 45 mm from lines just scribed.

Mark off four corner lap joints as in sketch. Bending line of lap joint is at 0.5 mm from bending line of side.

Centre punch eight holes as in sketch.

Mark off and centre punch 6 holes as in sketch.

Rule.
Steel straight edge.
Scriber.

Rule.
Steel straight edge.
Scriber.

Rule.
Scriber.
Straight edge.

Rule.
Scriber.
Scriber.

Rule.
Scriber.
Centre punch.
Hammer.

Rule.
Scriber.
Centre punch.
Hammer.
Remove corners by cutting twice: at x and xx.

Cut away corners. Do likewise at all other corners.

Drill 14 holes. Use wooden base to prevent damage to drill.

Drill 2 holes. Use wooden base.

Bend edges on four sides at right angles. This is done in stages.

Lever-operated shear.

Plate shears.

Hand drill. Twist drill 2.2 mm. Wooden base.

Hand drill. Twist drill 5.5 mm. Wooden base.

Vice. Folding bars or 2 pieces of angle bar. G-cramp. Wooden or plastic mallet.
<table>
<thead>
<tr>
<th>Step</th>
<th>Instructions</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fold edges and flatten with mallet. This too is done in stages.</td>
<td>Hard base. Wooden or plastic mallet.</td>
</tr>
<tr>
<td>2</td>
<td>Bend long side at right angles.</td>
<td>Vice. Folding bars or 2 pieces of angle bar. G-cramp. Wooden or plastic mallet.</td>
</tr>
<tr>
<td>3</td>
<td>Bend other long side at right angles.</td>
<td>Vice. Folding bars or 2 pieces of angle bar. G-cramp. Wooden or plastic mallet.</td>
</tr>
<tr>
<td>4</td>
<td>Bend four corner lap joints inward to right angles.</td>
<td>Vice. Stake. Wooden or plastic mallet.</td>
</tr>
<tr>
<td>5</td>
<td>Bend short sides at right angles.</td>
<td>Vice. Stake. Wooden or plastic mallet.</td>
</tr>
</tbody>
</table>
Drill holes through sides and lap joints.

Place and set rivets:
First stick rivets through holes from inside and place on stake. Then put set over shank and press plates together by blow with hammer. Diameter of rivet shanks: 2 mm, length of rivet shanks: 5 mm.

Snap rivet head by means of correct snap. The snap is used to give the right shape.

Now the partitions are made. First scribe four lines at right angles to side at 0, 12, 111 and 123 mm.

Place two V-marks at 45 mm from bottom line, and scribe line through them.
Cut along outline.

Bend along scribed lines.

Drill holes from outside box through partition.

Join with four rivets in way described before. Diameter of rivet shanks 2 mm, length of shanks 5 mm.

The handle is now made. First heat and bend 5 mm dia. bar at 5 mm from tip. Mind exact spot for striking. Be careful when clamping and striking. Bar should remain round.

Cut along outline.

Vice.

Folding bars or 2 pieces of angle bar.

G-cramp.

Wooden or plastic mallet.

Vice.

Wooden packing.

Hand drill.

Twist drill 2.2 mm.

Stake.

Vice.

Set.

Round-head snap.

Hammer.

Smith's fire.

Hammer.

Vice or swage block.
Clamp as shown in sketch (top of jaws a little above centre line of bar. Bent tip pointing in same direction). Now cold bend at 15 mm radius.

In same way cold bend other leg at 15 mm radius. Legs should be parallel.

Heat second tip and bend. Mind spot to be struck. Be careful when clamping and striking. Bar should remain round.

Mount handle by putting tips in drilled holes.

Set up tips to round heads on inside.

Code 1006 - INTENS B.V. - P.O.Box 262
4100 AG Culemborg - The Netherlands
EYE SHIELD

PICTOSTEPS
WORKSHOP INSTRUCTION METAL
PICTOSTEPS
WORKSHOP INSTRUCTION METAL

EYE SHIELD

USE:
This eye shield can be attached to a grinding machine to protect the eyes against flying sparks.

For the construction two auxiliary tools (folding jigs) are used which we are also going to make.

MATERIAL:  

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Black sheet steel</td>
<td>1.5 x 212 x 173 mm.</td>
</tr>
<tr>
<td>2</td>
<td>Mild steel</td>
<td>6 x 25 x 162 mm. (two pieces)</td>
</tr>
<tr>
<td>3</td>
<td>Mild steel</td>
<td>3/8&quot; dia. 225 mm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1 Bolt</td>
<td>3/8&quot; UNF thr. 105 mm.</td>
</tr>
<tr>
<td>5</td>
<td>1 Nut</td>
<td>3/8&quot; UNF</td>
</tr>
<tr>
<td>6</td>
<td>Glass plate</td>
<td>5 x 115 x 177 mm.</td>
</tr>
<tr>
<td>7</td>
<td>2 Spring washers</td>
<td></td>
</tr>
</tbody>
</table>

TOOLS:  

- Scribing tool
- Square
- Rule
- Steel straight edge
- Lever shears
- Centre punch
- Hammer
- Drilling machine
- Drilling vice
- Twist drill 3 mm.
- Twist drill 10 mm.
- Spring dividers
- Flat chisel
- Surface plate
- Wooden mallet
- Piece of wood 20 x 25 cm.
- 2 Angle sections: 30 x 30 x 5 — 350 mm long.
- Second-cut hand file
- Bastard hand file
- Vice
- 4 G-cramps
- Seam set
- Hack saw
- Try square
- Bevel protractor
- Screw stock and die 3/8" UNF
- 3/8" spanners
- Iron support 1/2" x 1" x 7"
- Cutting-out block
- Copper (vice clamps)
- Panel pins
The working drawing is on page 16. Also study the development on page 17. The letters and numbers are referred to in the following descriptions of operations. For the construction of the frame we start from a 1.5 mm thick sheet with one trued edge. This is side No. 1.

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scribe line square to trued edge and as near rough edge as possible. This is side No. 4. Use steel straight edge as support for square.</td>
<td>Scribe, Square, Steel straight edge.</td>
</tr>
<tr>
<td>From this line mark off 212 mm on trued edge (side 1).</td>
<td>Scribe, Rule.</td>
</tr>
<tr>
<td>Scribe line through this point square to trued edge. This is side No. 2. Use steel straight edge as support for square.</td>
<td>Scribe, Square, Steel straight edge.</td>
</tr>
<tr>
<td>Mark off 173 mm on sides 2 and 4 measured from side 1. Use steel straight edge as support for rule.</td>
<td>Scribe, Rule, Steel straight edge.</td>
</tr>
</tbody>
</table>
Scribe line through the two points marked off. This is side No. 3.

Cut out (shear) accurately on lines. The sheared work is 175 x 212 mm. Remove burr with second-cut hand file.

Mark off 16 mm from sides 2 and 4 as shown.

Through these points scribe two short lines (A and B on page 17) square to long side. Use steel straight edge as support for square.

Mark off distances of 11.5 and 17.5 mm from sides 2 and 4 as shown.
Through these four points scribe lines C, D, E and F (see p. 17) square to side 1. Use steel straight edge as support for square.

On sides 2 and 4 mark off 37 mm from side 1 as shown.

Scribe short lines G and H (see p. 17) through these two points as shown in figure. These lines are scribed from the sides to just past lines D and E.

On sides 2 and 4 mark off 11.5 and 17.5 mm from side 3 as shown.

Scribe short lines I and J through these two points as shown in figure.
From the corners mark off 27.5 mm on sides 2, 3 and 4 as shown. The four points obtained are numbered 5, 6, 7 and 8.

Scribe lines K and L as shown. Line K connects points 5 and 6. Line L connects points 7 and 8.

About 40 mm from sides 2 and 4 put V-marks at distances 38.5 and 118.5 mm from side 3.

Scribe lines M and N through these V-marks as shown in figure.

On both these lines M and N mark off 38.5 mm from side 2 and side 4. There are now two V-marks on both lines M and N.
<table>
<thead>
<tr>
<th>Step Description</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre punch the four points found in this way.</td>
<td>Centre punch, Hammer.</td>
</tr>
<tr>
<td>Fix work on piece of wood by means of panel pins around edge.</td>
<td>Piece of wood, 8 Panel pins, Hammer.</td>
</tr>
<tr>
<td>Drill four holes 3 mm dia. through centres.</td>
<td>Drilling machine, Twist drill 3 mm.</td>
</tr>
<tr>
<td>Enlarge holes to 10 mm dia.</td>
<td>Drilling machine, Twist drill 10 mm dia.</td>
</tr>
<tr>
<td>Scribe four lines tangent to holes as shown in figure.</td>
<td>Scriber, Steel straight edge.</td>
</tr>
</tbody>
</table>
Cut sheet at two places along lines G and H as shown in figure below. Cut up to innermost line.

Remove corner pieces (hatched parts in figure below). Cut along lines A and B.

Remove parts on opposite side indicated by hatching in figure below.

Remove parts indicated by hatching in figure below (along lines K and L).

Cut out window space with flat chisel. Stay some distance within scribed lines. Use cutting-out block of unhardened steel.
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Flatten work with mallet on surface plate.</td>
</tr>
<tr>
<td>2.</td>
<td>Surface plate, Wooden mallet.</td>
</tr>
<tr>
<td>3.</td>
<td>File window space to scribed lines. Clamp frame between two angle sections 30 x 30.5 mm.</td>
</tr>
<tr>
<td>4.</td>
<td>2 angle sections 30x30.5 mm. Second-cut hand file. Vice.</td>
</tr>
<tr>
<td>5.</td>
<td>To give the work the required shape the two folding jigs a and b will be used. How these jigs are made is described on pages 18 and 19. The dimensioned drawings are on page 20.</td>
</tr>
<tr>
<td>6.</td>
<td>Clamp work, together with jig a, on edge of bench by means of two G-cramps as shown in figure. Side 1 of work extends 27 mm from jig a.</td>
</tr>
<tr>
<td>8.</td>
<td>Bend projecting part round jig a to right angle, as shown in figure.</td>
</tr>
<tr>
<td>9.</td>
<td>Jig a. 2 G-cramps. Wooden or rubber mallet.</td>
</tr>
</tbody>
</table>
Continue bending until bent part is flat on jig a.

Clamp work jig a on bench as shown in figure. Place support against rounded part. The support is a piece of iron ½" x 1" x 7".

The beaded edge is finished by means of a steel seam set. The support prevents the work from being knocked away.

Clamp opposite side between two angle sections. Line J coincides with top edge of sections.

Bend projecting part to right angles. Note position of beaded edge. See figure.
Clamp work together with jig b between the angle sections. The bent part is under jig. Bend to right angles.

Clamp one of the sides between jig b and one angle section in vice. Outermost bending line coincides with top edge of section.

Bend to right angles as shown.

Clamp work with jig b as shown. Bend to right angles. Repeat whole operation on other side of work.

Now parts No. 2 are going to be made. For dimensions see drawing on page 16. Saw two lengths of 162 mm off a 25 x 6 mm bar.
Scribe two lines 12.5 mm from ends as shown.

Scribe two lines 27.5 mm from the ends as shown.

Put a V-mark at the midpoint of the outermost lines. As the width of the strip is 25 mm the midpoint is 12.5 mm from the side.

Centre-punch these two points.

Mark off two semicircles on the centres taking half the width of the strip as radius.

Scriber.
Rule.
Square.

Scriber.
Rule.
Square.

Scriber.
Rule.

Centre punch.
Hammer.

Dividers.
<table>
<thead>
<tr>
<th>Step</th>
<th>Tool(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre-dot to make circles permanent.</td>
<td>Centre punch, Hammer.</td>
</tr>
<tr>
<td>Clamp work with wooden packing in drilling vice.</td>
<td>Drilling machine, Drilling vice, Wooden packing, Twist drill 10 mm dia.</td>
</tr>
<tr>
<td>Drill two 10 mm holes (use cutting fluid).</td>
<td></td>
</tr>
<tr>
<td>File round to scribed lines.</td>
<td>Vice, Vice clamps, Bastard hand file.</td>
</tr>
<tr>
<td>Clamp strip in vice with vice clamps. The innermost scribed line should coincide with top edge of vice.</td>
<td>Vice, Vice clamps.</td>
</tr>
<tr>
<td>Bend strip. Strike as close to bending line as possible.</td>
<td>Vice, Vice clamps, Hammer.</td>
</tr>
<tr>
<td>Check that angle is 26°30'.</td>
<td>Protractor.</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Bend other end of strip in same way.</td>
<td>Vice. Vice clamps. Hammer.</td>
</tr>
<tr>
<td>Check that shape of strip is exactly as shown in figure. Height as shown should be 50 mm. The second strip is made in the same way as the first one.</td>
<td>Rule. Surface plate.</td>
</tr>
<tr>
<td>Saw a length of 225 mm off a 3/8&quot; dia. bar.</td>
<td>Vice. Hacksaw.</td>
</tr>
<tr>
<td>Cut 3/8&quot; UNF thread on both ends over 30 mm. Use cutting fluid.</td>
<td>Vice. Copper jaw clamps. Die stock. 3/8&quot; threading die.</td>
</tr>
</tbody>
</table>
Check that both threaded ends are 30 mm.

Assemble. Do this in the right order.

1 = nuts
2 = washer

Lightly tighten the two inner nuts. 3/8" spanner.

Firmly tighten the outer nuts. Use second spanner to hold the inner nuts in position. Place glass plate in frame and bend corners of glass channel inward to prevent plate from falling out. (See arrows).

Pass handle through holes and screw on nuts as shown.

The eye shield is now complete.
tolerance on all dimensions 0.5mm
* 5mm = inside measure
Development of frame of eye shield.
AUXILIARY TOOLS

PURPOSE
These auxiliary tools are used as bending jigs for the construction of the shield.

MATERIAL

DIMENSIONS

1. Mild steel. 35 x 10 x 200 mm

2. Mild steel. 10 mm dia. 210 mm

3. Mild steel. 25 x 5 x 200 mm

TOOLS

Scriber.
Bevel 135° (or bevel protractor).
Vice.
Hacksaw.
Bastard hand file.
Electric arc welding equipment.
Radius gauge. (See picture x).
Piece of metal 1.5 mm thick.
G-cramp.
Piece of wood.
<table>
<thead>
<tr>
<th>OPERATION</th>
<th>TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take the strip listed on page 18 under materials No. 3.</td>
<td>Scriber. 135° bevel or bevel protractor.</td>
</tr>
<tr>
<td>Scribe a line on it passing through one of the corners at 45° angle.</td>
<td></td>
</tr>
<tr>
<td>See picture.</td>
<td></td>
</tr>
<tr>
<td>Clamp strip in vice in such a way that the scribed line is vertical.</td>
<td>Vice. Jaw clamps. Hacksaw. Bastard hand file.</td>
</tr>
<tr>
<td>Saw off corner.</td>
<td></td>
</tr>
<tr>
<td>Remove burrs with file.</td>
<td></td>
</tr>
<tr>
<td>Check correct rounding with radius gauge.</td>
<td></td>
</tr>
<tr>
<td>Lay strip No. 1 and bar No. 2 on bench as shown. Put 1.5 mm piece of metal under strip. The strip is stopped by some device such as a vice, (see next picture), or it is clamped down with a G-cramp.</td>
<td>1.5 mm thick piece of metal. G-cramp.</td>
</tr>
<tr>
<td>Weld the bar to the strip. Press bar against strip with piece of wood.</td>
<td>Arc welding equipment. Piece of wood.</td>
</tr>
</tbody>
</table>
STAFF HOLDER

PICTOSTEPS
WORKSHOP INSTRUCTION METAL
STAFF HOLDER

USE: A flag-staff holder is used for holding a staff and can be mounted on a wall.

MATERIAL:
- x Plate steel
- xx Bar steel
- xxx Gaspipe

DIMENSIONS:
- 100 x 90 x 5 mm
- Ø 6 — 153 mm long
- 1 1/4" BSP greatest length about 140 mm

TOOLS:
- Chalk or varnish
- Scriber
- Measuring rule
- Steel straight edge
- Centre punch
- Hammer
- Dividers
- Bow-spring dividers
- Drilling machine
- Twist drill Ø 8 mm
- Cutting lubricant
- Vice
- Hacksaw frame
- Hacksaw blade
- Blunt bastard file
- Smith's fire
- Smith's tongs
- Anvil
- Smith's hammer
- Sawing machine
- Grinding machine
- Gas-welding apparatus
- Lighter
- Welding goggles
- Welding torch Nr. 3
- 4 mm welding wire
- Wooden block
- Arc-welding apparatus
- Welding shield
- Electrode
- Scaling hammer
- Scribing block (graduated)
- Surface plate
- V-blocks
- Welding glove

OPERATION

Apply chalk or varnish.
Put V-marks at two places 12 mm from side.

\[ x = 90 \text{ mm} \]

Draw line exactly through points of V-marks.

Chalk or varnish.
Scriber.
Measuring rule.
Scriber.
Steel straight edge.
Find midpoint of this line in following way:

Put point 37.5 mm of measuring rule under V-mark and scribe V-mark at 0 and 75 mm.

Centre-punch at outermost V-marks.

From centres mark off arcs with distance between centres for radius.

Centre-punch at intersection of arcs.
Draw line through centre made in previous operation and V-mark at midpoint of first line.  

Set bow-spring dividers at 10 mm.  

With this distance for radius mark off circle in each of the three centres.  

Draw three lines tangent to the circles.  

Now draw parallel line at 35 mm from the one tangent line that is parallel with side of workpiece, as shown in picture.
Drill three holes Ø 8 mm at centred points.

Use lubricant!

Remove corners by sawing them off just outside tangent lines.

File off exactly to lines.

Round corners in stages as shown here. Base is now finished.

Forging the ring.

Half of the bar is heated to orange-yellow.

Drilling machine.
Twist drill Ø 8 mm.
Cutting lubricant.

Vice.
Hacksaw frame.
Hacksaw blade.

Vice.
Blunt bastard file.

Vice.
Blunt bastard file.

Smith's fire.
Take bar out of fire and bend end to ¼ circle.

Anvil.
Smith's tongs.
Smith's hammer.

Go on bending end until half circle is made.

Anvil.
Smith's tongs.
Smith's hammer.

Heat second half of bar to orange-yellow.

Smith's fire.

Forge round to ¼ circle.

Anvil.
Smith's tongs.
Smith's hammer.

Finish circle.

Anvil.
Smith's tongs.
Smith's hammer.
From a 1½" gaspipe saw off a length of 240 mm. (This is sufficient for two flag-staff holders). Place pipe on two V-blocks on the surface plate.

2 V-blocks.
Surface plate.

Find centre line of pipe. This is sum of greatest height (x) and smallest height (xx) divided by 2. Set scribing block and scribe two lines on both sides of pipe.

Graduated scribing block.

Clamp pipe in sawing machine at angle of 45°. The 2 lines should be right above each other — check with set square. The saw blade should engage the pipe at 120 mm from the end, measured on upper line.

Sawing machine.
Set square.
Measuring rule.

With file make two notches in pipe face at intersection of lines with face.

Vice.
Blunt bastard file.

Grind beveled edge on straight end.

Grinding machine.
Clamp pipe in such a way that top extends 6 mm above vice-jaws. Put forged ring on it.

Gas weld.
Open oxygen valve.

Open acetylene valve.

Adjust pressure of acetylene at 0.5 at. by means of regulator.

Adjust pressure of oxygen at 1.25 at.
<table>
<thead>
<tr>
<th>Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open oxygen valve.</td>
<td>Welding torch Nr. 3.</td>
</tr>
<tr>
<td>Open acetylene valve.</td>
<td>Welding torch Nr. 3.</td>
</tr>
<tr>
<td>Ignite flame.</td>
<td>Lighter.</td>
</tr>
<tr>
<td>If necessary adjust flame until sharply defined clear cone is obtained.</td>
<td>Welding torch. Welding goggles.</td>
</tr>
<tr>
<td>Use goggles!</td>
<td></td>
</tr>
<tr>
<td>Point flame at point of work where ring is closed. Tip of flame must not touch material.</td>
<td>Welding torch.</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>When work-material starts flowing add welding material. Make tipping movement with welding wire.</td>
</tr>
<tr>
<td>2</td>
<td>Move to right while welding first half. Keep flame pointed at (thicker) ring.</td>
</tr>
<tr>
<td>3</td>
<td>Move to left while welding second half.</td>
</tr>
<tr>
<td>4</td>
<td>Smooth work after welding.</td>
</tr>
<tr>
<td>5</td>
<td>Place pipe exactly on centre of base. The notches should coincide with scribed line. Support on piece of wood.</td>
</tr>
</tbody>
</table>

**Welding**
- Torch.
- Welding wire 4 mm.

**Support**
- Piece of wood (height 70 mm).
Arc-welding pipe to base.
Put electrode into holder.
Use a glove!

Strike arc by scratching with electrode across material at place of weld. Make two tack welds.

Make weld moving to left.

Finish off weld.

Remove scale.
Flag-staff holder finished!
X 1/2" gas pipe
XX gas weld
XXX arc weld

Tolerance on all dimensions 0.5 mm unless otherwise specified.
SAW FRAME

PICTOSTEPS
WORKSHOP INSTRUCTION METAL
**SAW FRAME**

**USE:** The purpose of this saw is to cut material of small dimensions. For the construction of this frame we use a former which is first made by ourselves.

<table>
<thead>
<tr>
<th>For the saw frame is required:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MATERIAL:</strong> White shaft steel 6 mm dia.</td>
</tr>
<tr>
<td><strong>DIMENSIONS:</strong> Length 402 mm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For the former is required:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MATERIAL:</strong> x Mild steel</td>
</tr>
<tr>
<td><strong>DIMENSIONS:</strong> 10 x 50 x 75 mm</td>
</tr>
<tr>
<td>xx Mild steel</td>
</tr>
<tr>
<td><strong>DIMENSIONS:</strong> 6 x 10 x 75 mm</td>
</tr>
<tr>
<td>xxx Mild steel</td>
</tr>
<tr>
<td><strong>DIMENSIONS:</strong> dia. 16 mm length 15 mm</td>
</tr>
</tbody>
</table>

**TOOLS:**
- Rule.
- Try square.
- Scriber.
- Vernier calipers.
- Centre punch.
- Hammer.
- Flat file.
- Hack saw.
- Vernier bevel protractor.
- Sawing machine.
- Drilling machine.
- Machine vice.
- Twist drill dia. 6 mm.
- Twist drill dia. 16 mm.
- Arc welding equipment.
- Vice.
- Two G-cramps.
- Goggles.
<table>
<thead>
<tr>
<th>OPERATION</th>
<th>TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>First the former is made. Saw 75 mm off a flat steel bar of 10 x 50 mm.</td>
<td>Sawing machine.</td>
</tr>
<tr>
<td>This is the base.</td>
<td>Rule.</td>
</tr>
<tr>
<td>Saw 75 mm off a steel bar of 6 x 10 mm.</td>
<td>Vice.</td>
</tr>
<tr>
<td>This is the strip.</td>
<td>Rule.</td>
</tr>
<tr>
<td>Saw 15 mm off a round steel bar dia. 16 mm.</td>
<td>Hack saw.</td>
</tr>
<tr>
<td>This is the pin.</td>
<td></td>
</tr>
<tr>
<td>Clamp strip on base at 4 mm from edge.</td>
<td>Two G-cramps.</td>
</tr>
<tr>
<td></td>
<td>Rule.</td>
</tr>
<tr>
<td>Tack weld strip on one side to base. First make outermost welds.</td>
<td>Arc welding</td>
</tr>
<tr>
<td></td>
<td>equipment.</td>
</tr>
<tr>
<td>(Thickness electrode 3¾ mm).</td>
<td></td>
</tr>
</tbody>
</table>
Scribe line on base at 13 mm from side and at right angles to strip.

Put V-mark on this line at 14.5 mm from strip.

Centre punch at marked point.

Drill hole at marked point. Use goggles!

Enlarge hole to 16 mm dia.

Try square.
Rule.
Scriber.

Rule.
Scriber.

Centre punch.
Hammer.

Drilling machine.
Machine vice.
Twist drill 6 mm.
Goggles.

Drilling machine.
Machine vice.
Twist drill 16 mm.
Goggles.
Put base upside down on welding table with pin in hole.
Support with strip 10 mm thick.
Tack weld pin in hole.

Arc welding equipment.

Scribe line on top surface of strip at 13 mm from side of base and parallel to it, as shown in figure. This is the datum line and it goes through the centre of the pin if lengthened.

Now the former is complete.

Try square.
Scriber.
Rule.

Now we are going to make the saw frame.

Clamp former in vice.

Vice.
Former.

Put bar in former with end at distance 16 mm inside datum line, as shown.

Vice.
Former.
Rule.

Bend to angle of 83 deg.
Check with vernier bevel protractor.

Vice.
Former.
Vernier bevel protractor.
Put bar in former as shown. The straight end extends 303 mm outside datum line.

Put bar in former as shown. Straight end extends 180 mm inside datum line.

Bend until distance between first bend and straight part is 8 mm.

Vice. Former. Rule.

Bend to angle of 135 deg. Check with bevel protractor.

Vice. Former. Vernier bevel protractor.

Put bar in former as shown. Straight end extends 202 mm outside datum line.

Vice. Former. Rule.
Bend to angle of 45 deg.  
Check with bevel protractor.

Put bar in former as shown.  
Straight end extends 65 mm outside datum line.

Bend to angle of 105 deg.  
Check with bevel protractor.  
Also check the 150 mm dimension.

See drawing.

Saw slot of 8 mm depth in both legs.

Vice.  
Former.  
Vernier bevel protractor.

File notches on outside of tips as shown.  
Keep file at angle of 45 deg. (x)  
The exact place of these notches depends on blade to be used.

Vice.  
Flat file.
FORMER

XX = welded
XX = exact place dependent on saw blade to be used

Tolerance small dimensions 1mm unless otherwise specified

Code 1009 - INTENS B.V. - P.O.Box 262
4100 AG Culemborg - The Netherlands